
Quick Sort

Kuan-Yu Chen (陳冠宇)

2019/03/27 @ TR-310-1, NTUST



2

Review
• A binary heap is a complete binary tree in which every node 

satisfies the heap property
– Min Heap
– Max Heap

• MAX-HEAPIFY takes time O(log2 𝑛𝑛)
• BUILD-MAX-HEAP takes time O(𝑛𝑛)
• HEAPSORT takes time O(𝑛𝑛 log2 𝑛𝑛)



3

Quick Sort.
• Quick sort is a widely used sorting algorithm developed by C. 

A. R. Hoare
– Quick sort is also known as partition exchange sort

• The quick sort algorithm works as follows:
1. Select an element pivot from the array elements
2. Rearrange the elements in the array in such a way that all 

elements that are less than the pivot appear before the pivot 
and all elements greater than the pivot element come after it 

3. Recursively sort the two sub-arrays thus obtained

9 4 1 6 7 3 8 2 5

4 1 3 2 5 9 8 6 7



4

Example.
• Sort the given array using quick sort algorithm



5

Example..



6

Example…

• During the procedure, four regions maintained by the 
PARTITION function on a subarray



7

Quick Sort…
• The key to the algorithm is the PARTITION procedure, which 

rearranges the subarray 𝐴𝐴[𝑝𝑝. . 𝑟𝑟] in place



8

Quick Sort….

• Quicksort, like merge sort, applies the divide-and-conquer 
paradigm
– Divide: Partition (rearrange) the array into two (possibly empty) 

subarrays
– Conquer: Sort the two subarrays by recursive calls to quicksort
– Combine: All the subarrays are already sorted, no work is 

needed to combine them



9

Analyses.
• The running time of quicksort depends on whether the 

partitioning is balanced or unbalanced
– Worst-case partitioning

• The worst-case behavior for quicksort occurs when the 
partitioning routine produces one subproblem with 𝑛𝑛 − 1
elements and one with 0 elements

• The partitioning costs Θ(𝑛𝑛) time
• Thus, 𝑇𝑇 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + 𝑇𝑇 0 + Θ 𝑛𝑛 = 𝑇𝑇 𝑛𝑛 − 1 + Θ 𝑛𝑛
• By using substitution method, it is easy to get that 𝑇𝑇 𝑛𝑛 = Θ 𝑛𝑛2

– Proof the worst-case (for Big-O only!)
• By the substitution method, we guess 𝑇𝑇(𝑛𝑛) ≤ 𝑐𝑐𝑛𝑛2

𝑇𝑇 𝑛𝑛 = max
0≤𝑞𝑞≤𝑛𝑛−1

𝑇𝑇 𝑞𝑞 + 𝑇𝑇(𝑛𝑛 − 𝑞𝑞 − 1) + Θ 𝑛𝑛

≤ max
0≤𝑞𝑞≤𝑛𝑛−1

𝑐𝑐𝑞𝑞2 + 𝑐𝑐 𝑛𝑛 − 𝑞𝑞 − 1 2 + Θ 𝑛𝑛

= 𝑐𝑐 max
0≤𝑞𝑞≤𝑛𝑛−1

𝑞𝑞2 + (𝑛𝑛 − 𝑞𝑞 − 1)2 + Θ 𝑛𝑛

≤ 𝑐𝑐 𝑛𝑛 − 1 2 + Θ 𝑛𝑛 = O(𝑛𝑛2)

𝑎𝑎 + 𝑏𝑏 = 𝑐𝑐
⟹ 𝑎𝑎 + 𝑏𝑏 2 = 𝑐𝑐2
⟹ 𝑎𝑎2 + 2𝑎𝑎𝑎𝑎 + 𝑏𝑏2 = 𝑐𝑐2
⟹ 𝑎𝑎2 + 𝑏𝑏2 ≤ 𝑐𝑐2



10

Analyses..
– Best-case partitioning

• The best case will occur when the partition functionproduces two 
subproblems, each of size no more than 𝑛𝑛

2

• In other words, one is of size 𝑛𝑛
2

and one of size 𝑛𝑛
2
− 1

• The partitioning costs Θ(𝑛𝑛) time

• Thus, 𝑇𝑇 𝑛𝑛 = 2𝑇𝑇 𝑛𝑛
2

+ Θ(𝑛𝑛)

• By case 2 of the master theorem, we can obtain 𝑇𝑇 𝑛𝑛 =
Θ(𝑛𝑛 log2 𝑛𝑛)



11

Randomized Quick Sort.
• Instead of always using 𝐴𝐴[𝑟𝑟] as the pivot, we will select a 

randomly chosen element from the subarray 𝐴𝐴[𝑝𝑝. . 𝑟𝑟]
– Because we randomly choose the pivot element, we expect the 

split of the input array to be reasonably well balanced on 
average



12

Randomized Quick Sort..
• Instead of always using 𝐴𝐴[𝑟𝑟] as the pivot, we will select a 

randomly chosen element from the subarray 𝐴𝐴[𝑝𝑝. . 𝑟𝑟]
– Because we randomly choose the pivot element, we expect the 

split of the input array to be reasonably well balanced on 
average



13

Analyses.
• The QUICKSORT and RANDOMIZED-QUICKSORT 

procedures differ only in how they select pivot elements
– They are the same in all other respects

• In the PARTITION procedure, each iteration of the for loop 
performs a comparison, comparing the pivot element to 
another element of the array 𝐴𝐴
– If we can count the total number of times that the loop is 

executed, we can bound the total time



14

Analyses..
• For ease of analysis, we rename the array 𝐴𝐴 as 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑛𝑛

– 𝑧𝑧𝑖𝑖 being the 𝑖𝑖𝑡𝑡𝑡 element
– 𝑍𝑍𝑖𝑖𝑖𝑖 = {𝑧𝑧𝑖𝑖, 𝑧𝑧𝑖𝑖+1, … , 𝑧𝑧𝑗𝑗} to be the set of elements between 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑗𝑗

• It is easy to understand that each pair of elements is 
compared at most once
– We define 𝑋𝑋𝑖𝑖𝑖𝑖 = I{𝑧𝑧𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑧𝑧𝑗𝑗}
– Since each pair is compared at most once, we can easily 

characterize the total number of 
comparisons performed by the algorithm

𝑋𝑋 = �
𝑖𝑖=1

𝑛𝑛−1

�
𝑗𝑗=𝑖𝑖+1

𝑛𝑛

𝑋𝑋𝑖𝑖𝑖𝑖



15

Analyses…
– Taking expectations of both sides

• Since the RANDOMIZED-PARTITION procedure chooses 
each pivot randomly and independently

E 𝑋𝑋 = E �
𝑖𝑖=1

𝑛𝑛−1

�
𝑗𝑗=𝑖𝑖+1

𝑛𝑛

𝑋𝑋𝑖𝑖𝑖𝑖

= �
𝑖𝑖=1

𝑛𝑛−1

�
𝑗𝑗=𝑖𝑖+1

𝑛𝑛

E[𝑋𝑋𝑖𝑖𝑖𝑖]

= �
𝑖𝑖=1

𝑛𝑛−1

�
𝑗𝑗=𝑖𝑖+1

𝑛𝑛

𝑃𝑃(𝑋𝑋𝑖𝑖𝑖𝑖: 𝑧𝑧𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑧𝑧𝑗𝑗)

𝑃𝑃 𝑋𝑋𝑖𝑖𝑖𝑖: 𝑧𝑧𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑧𝑧𝑗𝑗 = 𝑃𝑃 𝑧𝑧𝑖𝑖 𝑜𝑜𝑜𝑜 𝑧𝑧𝑗𝑗 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑍𝑍𝑖𝑖𝑗𝑗
= 𝑃𝑃 𝑧𝑧𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑍𝑍𝑖𝑖𝑖𝑖 + 𝑃𝑃 𝑧𝑧𝑗𝑗 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑍𝑍𝑖𝑖𝑖𝑖

=
1

𝑗𝑗 − 𝑖𝑖 + 1 +
1

𝑗𝑗 − 𝑖𝑖 + 1

=
2

𝑗𝑗 − 𝑖𝑖 + 1



16

Analyses….
• Consequently, we can get

– Let 𝑘𝑘 = 𝑗𝑗 − 𝑖𝑖

• We conclude that, using RANDOMIZED-PARTITION, the 
expected running time of quicksort is O(𝑛𝑛 log2 𝑛𝑛)

E 𝑋𝑋 = �
𝑖𝑖=1

𝑛𝑛−1

�
𝑗𝑗=𝑖𝑖+1

𝑛𝑛

𝑃𝑃(𝑋𝑋𝑖𝑖𝑖𝑖: 𝑧𝑧𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑧𝑧𝑗𝑗) = �
𝑖𝑖=1

𝑛𝑛−1

�
𝑗𝑗=𝑖𝑖+1

𝑛𝑛
2

𝑗𝑗 − 𝑖𝑖 + 1

= �
𝑖𝑖=1

𝑛𝑛−1

�
𝑗𝑗=𝑖𝑖+1

𝑛𝑛
2

𝑘𝑘 + 1 < �
𝑖𝑖=1

𝑛𝑛−1

�
𝑗𝑗=𝑖𝑖+1

𝑛𝑛
2
𝑘𝑘

= �
𝑖𝑖=1

𝑛𝑛−1

O(log2 𝑛𝑛)

= O(𝑛𝑛 log2 𝑛𝑛)



17

Variant.
• Sort the given array using quick sort algorithm



18

Variant..



19

Variant…



20

Variant….



21

Variant…..



22

Variant……



23

Questions?

kychen@mail.ntust.edu.tw


	Quick Sort
	Review
	Quick Sort.
	Example.
	Example..
	Example…
	Quick Sort…
	Quick Sort….
	Analyses.
	Analyses..
	Randomized Quick Sort.
	Randomized Quick Sort..
	Analyses.
	Analyses..
	Analyses…
	Analyses….
	Variant.
	Variant..
	Variant…
	Variant….
	Variant…..
	Variant……
	Questions?

