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Review

« A binary heap is a complete binary tree in which every node
satisfies the heap property

— Min Heap
— Max Heap
« MAX-HEAPIFY takes time O(log, n)

« BUILD-MAX-HEAP takes time O(n)
« HEAPSORT takes time O(nlog, n)



Quick Sort.

 Quick sort is a widely used sorting algorithm developed by C.
A.R. Hoare

— Quick sort is also known as partition exchange sort

« The quick sort algorithm works as follows:

1.
2.

Select an element pivot from the array elements

Rearrange the elements in the array in such a way that all
elements that are less than the pivot appear before the pivot
and all elements greater than the pivot element come after it

Recursively sort the two sub-arrays thus obtained
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o Sort the given array using quick sort algorithm
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Example...

 During the procedure, four regions maintained by the
PARTITION function on a subarray




Quick Sort...

+ The key to the algorithm is the PARTITION procedure, which

rearranges the subarray A[p..r] in place

PARTITION(A, p, 1)

1 x = Alr]

2 1 =p—1

3 forj =ptor—1

4 if A[j] <x

5 I =1 +1

6 exchange A[i] with A[/]
7 exchange A[i + 1] with A[r]

8 returni 4 1
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Quick Sort....

QUICKSORT(A, p,r)

1 ifp<r

2 qg = PARTITION(A, p,r)
3 QUICKSORT(A, p,qg — 1)
4 QUICKSORT(A,q + 1,r1)

« Quicksort, like merge sort, applies the divide-and-conquer
paradigm
— Divide: Partition (rearrange) the array into two (possibly empty)
subarrays
— Congquer: Sort the two subarrays by recursive calls to quicksort

— Combine: All the subarrays are already sorted, no work is
needed to combine them



Analyses.

The running time of quicksort depends on whether the
partitioning is balanced or unbalanced
— Worst-case partitioning

« The worst-case behavior for quicksort occurs when the
partitioning routine produces one subproblem withn — 1
elements and one with 0 elements

o The partitioning costs @(n) time

e« Thus,T(n) =Tn—1)+TO)+0(n)=Tn—-1)+ 60(n)

. By using substitution method, it is easy to get that T(n) = 0(n?)
— Proof the worst-case (for Big-O only!)

. By the substitution method, we guess T(n) < cn?

I(n) = max (T(q)+T(n—q-1)+6®

= osrclzqsari(—l(cqz +c(n—q-1?%)+6Mm) a +(b = 2)2 )
— 2 o 1N2 = (a + =
=c¢ max (g°+(n—q—1)°)+0(n)
OSan—l( ) ) — q? + 2ab + b2 = C2

<cn-1)%+0(n)=0n? a2 4+ b2 < 2



Analyses..

— Best-case partitioning
« The best case will occur when the partition function produces two
subproblems, each of size no more than g
« In other words, one is of size E‘ and one of size [ﬂ -1
o The partitioning costs O(n) time
+ Thus, T(n) = 2T (3) + 6()

« By case 2 of the master theorem, we can obtain T(n) =
O(nlog, n)
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Randomized Quick Sort.

o Instead of always using A[r] as the pivot, we will select a
randomly chosen element from the subarray A[p..7]

— Because we randomly choose the pivot element, we expect the

split of the input array to be reasonably well balanced on
average

RANDOMIZED-PARTITION (A4, p, 1)

1 i = RANDOM(p,r)
2 exchange A[r] with A[i]
3 return PARTITION(A, p, 1)

RANDOMIZED-QUICKSORT (A, p,r)

1 ifp<r

2 g = RANDOMIZED-PARTITION (A, p, 1)
3 RANDOMIZED-QUICKSORT (A4, p,qg — 1)
4 RANDOMIZED-QUICKSORT(A,q + 1,r)
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Randomized Quick Sort..

o Instead of always using A[r] as the pivot, we will select a
randomly chosen element from the subarray A[p..7]

— Because we randomly choose the pivot element, we expect the
split of the input array to be reasonably well balanced on

average PARTITION(A, p,r)

1 x = Alr]

2 1 =p—1

3 forj = ptor —1

4 if A[j] <x

5 I =1+1
RANDOMIZED-PARTITION (A4, p,r) 6 exchange A[i] with A[/]
1 i = RANDOM(p,r) 7 exchange A[i + 1] with A[r]
2 exchange A[r] with A[i] 8 returni + 1

3 return PARTITION(A, p,r)

RANDOMIZED-QUICKSORT (A, p, r)

1 ifp<r

2 g = RANDOMIZED-PARTITION (A4, p, )
3 RANDOMIZED-QUICKSORT (A4, p,qg — 1)
4 RANDOMIZED-QUICKSORT(A,q + 1,r)

QUICKSORT(A, p,r)

I ifp<r

2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1)
4 QUICKSORT(A,q + 1,r)




Analyses.

« The QUICKSORT and RANDOMIZED-QUICKSORT
procedures differ only in how they select pivot elements

— They are the same in all other respects

 In the PARTITION procedure, each iteration of the for loop
performs a comparison, comparing the pivot element to
another element of the array A

— If we can count the total number of times that the loop is

RANDOMIZED-PARTITION (4, p, 1)
1 i = RANDOM(p,r)

2 exchange A[r] with A[i] ‘
3 return PARTITION(A, p,r)

RANDOMIZED-QUICKSORT (A4, p,r)

1 ifp<r

2
3
4

g = RANDOMIZED-PARTITION (A4, p,r)
RANDOMIZED-QUICKSORT (A4, p,q — 1)
RANDOMIZED-QUICKSORT(A,q + 1,r)

executed, we can bound the total time

PARTITION(A, p, 1)

1 x = A[r]

2 i =p-—1

3 forj:ptor—1«

4 if A[j] <x

5 I =1+1

6 exchange A[i] with A[/]

7 exchange A[i + 1] with A[r]

8 returni + 1 13



Analyses..

 For ease of analysis, we rename the array A as z4, Z, ...

~ z; being the i*" element

- Zij =12, Zi41, .., Zj} to be the set of elements between z; and z;

o It is easy to understand that each pair of elements is

compared at most once

— We define X;; = [{z; is compared to z;}

yZn

— Since each pair is compared at most once, we can easﬂy

characterize the total number of

comparisons performed by the algorithm (f)
n-1 n (8
i=1 j=i+1 (h)
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Analyses...

— Taking expectations of both sides

n n
() > Xy
J 1

-1
=1 j=i+

= nz_:l zn: E[X;;]

i=1 ]=l+1

n—1
z z P(X;j: z; is compared to zj)

=1 j=i+1

 Since the RANDOMIZED-PARTITION procedure chooses
each pivot randomly and independently

E[X]

P(Xij: z; is compared to zj) = P(zi or z; is chosen to be pivot from Zl-j)
= P(Zi Is chosen to be pivot from Zij) + P(Zj Is chosen to be pivot from Zij)

1 s 1
Cj—it+1 j-i+1
2

:j—i+1 15



Analyses....

- Consequently, we can get
— Letk=j—1

P(X;j: z; is compared to z;) = z z T

+1 i=1 j=i+1

n-1 - n
—Z 2 P
Y k+1 k

i=1 j=i+1 i=1 j

n—1
= z O(log, n)

i=1
= O(nlog, n)

« We conclude that, using RANDOMIZED-PARTITION, the
expected running time of quicksort is O(nlog, n)
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Variant.

 Sort the given array using quick sort algorithm
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We choose the first element as the pivot.

Set loc =0, 1left =0, and right = 5.

27 10 36 18 25 45
loc right
left

Scan from right to left. Since a[loc]

< a[right], decrease the value of right.

27 10 36 18 25 45
loc right
left
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Variant..

Scan from right to left. Since a[loc]

< a[right], decrease the value of right.

27 10 36 18 25 45
loc right
left

Since a[loc] » a[right], interchange

the two values and set loc = right.

25 10 36 18 27 45
left right
loc

Start scanning from left to right. Since a[ loc]
> a[left], increment the value of left.

25
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45

left

right
loc
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Variant...

Start scanning from left to right. Since a[loc]
> a[left], increment the value of left.

25 10 36 18 27 45
left right
loc

Since a[loc] < a[left], interchange

the values and set 1oc = 1eft.

25 10 27 18 36 45
left right
loc

Scan from right to left. Since a[loc]
< a[right], decrement the value of right.

25 10 27 18 36 45
left right
loc
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Variant....

Scan from right to left. Since a[loc]
< a[right], decrement the value of right.

25 10 27 18 36 45
left right
loc

Since a[loc] > a[right], interchange
the two values and set loc = right.

25 10 18 27 36 45
left right
loc

Start scanning from left to right. Since a[loc]
> a[left], increment the value of left.

25
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36

45

right
loc
left
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Variant.....

QUICK_SORT (ARR, BEG, END)

Step 1: IF (BEG < END)
CALL PARTITION (ARR, BEG, END, LOC)
CALL QUICKSORT(ARR, BEG, LOC - 1)
CALL QUICKSORT(ARR, LOC + 1, END)
[END OF IF]
Step 2: END

21



Variant......

PARTITION (ARR, BEG, END, LOC)

Step 1:
Step 2:
Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step

[INITIALIZE] SET LEFT = BEG, RIGHT = END, LOC = BEG, FLAG = 0

Repeat Steps 3 to 6 while FLAG = 0
Repeat while ARR[LOC] <= ARR[RIGHT] AND LOC != RIGHT
SET RIGHT = RIGHT - 1
[END OF LOOP]
IF LOC = RIGHT
SET FLAG = 1
ELSE IF ARR[LOC] > ARR[RIGHT]
SWAP ARR[LOC] with ARR[RIGHT]
SET LOC = RIGHT
[END OF IF]
IF FLAG =0
Repeat while ARR[LOC] >= ARR[LEFT] AND LOC != LEFT
SET LEFT = LEFT + 1
[END OF LOOP]
IF LOC = LEFT
SET FLAG = 1
ELSE IF ARR[LOC] < ARR[LEFT]
SWAP ARR[LOC] with ARR[LEFT]
SET LOC = LEFT
[END OF IF]
[END OF IF]
[END OF LOOP]
END
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Questions?

kychen@mail.ntust.edu.tw
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