Quick Sort

Kuan-Yu Chen ([t % %)

2019/03/27 @ TR-310-1, NTUST

Review

« A binary heap is a complete binary tree in which every node
satisfies the heap property

— Min Heap
— Max Heap
« MAX-HEAPIFY takes time O(log, n)

« BUILD-MAX-HEAP takes time O(n)
« HEAPSORT takes time O(nlog, n)

Quick Sort.

 Quick sort is a widely used sorting algorithm developed by C.
A.R. Hoare

— Quick sort is also known as partition exchange sort

« The quick sort algorithm works as follows:

1.
2.

Select an element pivot from the array elements

Rearrange the elements in the array in such a way that all
elements that are less than the pivot appear before the pivot
and all elements greater than the pivot element come after it

Recursively sort the two sub-arrays thus obtained

9 4 1 6 I 3 8 2 5

Example.

(a)

(b)

(c)

l

P.J

o Sort the given array using quick sort algorithm

(d)

(e)

()

(g)

\®)

\®)

Example...

 During the procedure, four regions maintained by the
PARTITION function on a subarray

Quick Sort...

+ The key to the algorithm is the PARTITION procedure, which

rearranges the subarray A[p..r] in place

PARTITION(A, p, 1)

1 x = Alr]

2 1 =p—1

3 forj =ptor—1

4 if A[j] <x

5 I =1 +1

6 exchange A[i] with A[/]
7 exchange A[i + 1] with A[r]

8 returni 4 1

(a)

(b)

(©)

(d)

(e)

)

(g)

(h)

o)

|2871356E
Pl r
871356E
Pl r
71356E
Dol J r
287|1356E
p i J r
21'78'356E
p [J r
213'87'56E
p i J T
213'875@
p] r
213'8756E
p i r
2137568'

Quick Sort....

QUICKSORT(A, p,r)

1 ifp<r

2 qg = PARTITION(A, p,r)
3 QUICKSORT(A, p,qg — 1)
4 QUICKSORT(A,q + 1,r1)

« Quicksort, like merge sort, applies the divide-and-conquer
paradigm
— Divide: Partition (rearrange) the array into two (possibly empty)
subarrays
— Congquer: Sort the two subarrays by recursive calls to quicksort

— Combine: All the subarrays are already sorted, no work is
needed to combine them

Analyses.

The running time of quicksort depends on whether the
partitioning is balanced or unbalanced
— Worst-case partitioning

« The worst-case behavior for quicksort occurs when the
partitioning routine produces one subproblem withn — 1
elements and one with 0 elements

o The partitioning costs @(n) time

e« Thus,T(n) =Tn—1)+TO)+0(n)=Tn—-1)+ 60(n)

. By using substitution method, it is easy to get that T(n) = 0(n?)
— Proof the worst-case (for Big-O only!)

. By the substitution method, we guess T(n) < cn?

I(n) = max (T(q)+T(n—q-1)+6®

= osrclzqsari(—l(cqz +c(n—q-1?%)+6Mm) a +(b = 2)2)
— 2 o 1N2 = (a + =
=c¢ max (g°+(n—q—1)°)+0(n)
OSan—l()) — q? + 2ab + b2 = C2

<cn-1)%+0(n)=0n? a2 4+ b2 < 2

Analyses..

— Best-case partitioning
« The best case will occur when the partition function produces two
subproblems, each of size no more than g
« In other words, one is of size E‘ and one of size [ﬂ -1
o The partitioning costs O(n) time
+ Thus, T(n) = 2T (3) + 6()

« By case 2 of the master theorem, we can obtain T(n) =
O(nlog, n)

10

Randomized Quick Sort.

o Instead of always using A[r] as the pivot, we will select a
randomly chosen element from the subarray A[p..7]

— Because we randomly choose the pivot element, we expect the

split of the input array to be reasonably well balanced on
average

RANDOMIZED-PARTITION (A4, p, 1)

1 i = RANDOM(p,r)
2 exchange A[r] with A[i]
3 return PARTITION(A, p, 1)

RANDOMIZED-QUICKSORT (A, p,r)

1 ifp<r

2 g = RANDOMIZED-PARTITION (A, p, 1)
3 RANDOMIZED-QUICKSORT (A4, p,qg — 1)
4 RANDOMIZED-QUICKSORT(A,q + 1,r)

11

Randomized Quick Sort..

o Instead of always using A[r] as the pivot, we will select a
randomly chosen element from the subarray A[p..7]

— Because we randomly choose the pivot element, we expect the
split of the input array to be reasonably well balanced on

average PARTITION(A, p,r)

1 x = Alr]

2 1 =p—1

3 forj = ptor —1

4 if A[j] <x

5 I =1+1
RANDOMIZED-PARTITION (A4, p,r) 6 exchange A[i] with A[/]
1 i = RANDOM(p,r) 7 exchange A[i + 1] with A[r]
2 exchange A[r] with A[i] 8 returni + 1

3 return PARTITION(A, p,r)

RANDOMIZED-QUICKSORT (A, p, r)

1 ifp<r

2 g = RANDOMIZED-PARTITION (A4, p,)
3 RANDOMIZED-QUICKSORT (A4, p,qg — 1)
4 RANDOMIZED-QUICKSORT(A,q + 1,r)

QUICKSORT(A, p,r)

I ifp<r

2 g = PARTITION(A, p,r)
3 QUICKSORT(A, p,g — 1)
4 QUICKSORT(A,q + 1,r)

Analyses.

« The QUICKSORT and RANDOMIZED-QUICKSORT
procedures differ only in how they select pivot elements

— They are the same in all other respects

 In the PARTITION procedure, each iteration of the for loop
performs a comparison, comparing the pivot element to
another element of the array A

— If we can count the total number of times that the loop is

RANDOMIZED-PARTITION (4, p, 1)
1 i = RANDOM(p,r)

2 exchange A[r] with A[i] ‘
3 return PARTITION(A, p,r)

RANDOMIZED-QUICKSORT (A4, p,r)

1 ifp<r

2
3
4

g = RANDOMIZED-PARTITION (A4, p,r)
RANDOMIZED-QUICKSORT (A4, p,q — 1)
RANDOMIZED-QUICKSORT(A,q + 1,r)

executed, we can bound the total time

PARTITION(A, p, 1)

1 x = A[r]

2 i =p-—1

3 forj:ptor—1«

4 if A[j] <x

5 I =1+1

6 exchange A[i] with A[/]

7 exchange A[i + 1] with A[r]

8 returni + 1 13

Analyses..

 For ease of analysis, we rename the array A as z4, Z, ...

~ z; being the i*" element

- Zij =12, Zi41, .., Zj} to be the set of elements between z; and z;

o It is easy to understand that each pair of elements is

compared at most once

— We define X;; = [{z; is compared to z;}

yZn

— Since each pair is compared at most once, we can easﬂy

characterize the total number of

comparisons performed by the algorithm (f)
n-1 n (8
i=1 j=i+1 (h)

o)

4

2

1

[\

\S]

Analyses...

— Taking expectations of both sides

n n
() > Xy
J 1

-1
=1 j=i+

= nz_:l zn: E[X;;]

i=1]=l+1

n—1
z z P(X;j: z; is compared to zj)

=1 j=i+1

 Since the RANDOMIZED-PARTITION procedure chooses
each pivot randomly and independently

E[X]

P(Xij: z; is compared to zj) = P(zi or z; is chosen to be pivot from Zl-j)
= P(Zi Is chosen to be pivot from Zij) + P(Zj Is chosen to be pivot from Zij)

1 s 1
Cj—it+1 j-i+1
2

:j—i+1 15

Analyses....

- Consequently, we can get
— Letk=j—1

P(X;j: z; is compared to z;) = z z T

+1 i=1 j=i+1

n-1 - n
—Z 2 P
Y k+1 k

i=1 j=i+1 i=1 j

n—1
= z O(log, n)

i=1
= O(nlog, n)

« We conclude that, using RANDOMIZED-PARTITION, the
expected running time of quicksort is O(nlog, n)

16

Variant.

 Sort the given array using quick sort algorithm

27

10

36

18

25

45

We choose the first element as the pivot.

Set loc =0, 1left =0, and right = 5.

27 10 36 18 25 45
loc right
left

Scan from right to left. Since a[loc]

< a[right], decrease the value of right.

27 10 36 18 25 45
loc right
left

17

Variant..

Scan from right to left. Since a[loc]

< a[right], decrease the value of right.

27 10 36 18 25 45
loc right
left

Since a[loc] » a[right], interchange

the two values and set loc = right.

25 10 36 18 27 45
left right
loc

Start scanning from left to right. Since a[loc]
> a[left], increment the value of left.

25

10

36

18

27

45

left

right
loc

18

Variant...

Start scanning from left to right. Since a[loc]
> a[left], increment the value of left.

25 10 36 18 27 45
left right
loc

Since a[loc] < a[left], interchange

the values and set 1oc = 1eft.

25 10 27 18 36 45
left right
loc

Scan from right to left. Since a[loc]
< a[right], decrement the value of right.

25 10 27 18 36 45
left right
loc

19

Variant....

Scan from right to left. Since a[loc]
< a[right], decrement the value of right.

25 10 27 18 36 45
left right
loc

Since a[loc] > a[right], interchange
the two values and set loc = right.

25 10 18 27 36 45
left right
loc

Start scanning from left to right. Since a[loc]
> a[left], increment the value of left.

25

10

18

27

36

45

right
loc
left

20

Variant.....

QUICK_SORT (ARR, BEG, END)

Step 1: IF (BEG < END)
CALL PARTITION (ARR, BEG, END, LOC)
CALL QUICKSORT(ARR, BEG, LOC - 1)
CALL QUICKSORT(ARR, LOC + 1, END)
[END OF IF]
Step 2: END

21

Variant......

PARTITION (ARR, BEG, END, LOC)

Step 1:
Step 2:
Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step

[INITIALIZE] SET LEFT = BEG, RIGHT = END, LOC = BEG, FLAG = 0

Repeat Steps 3 to 6 while FLAG = 0
Repeat while ARR[LOC] <= ARR[RIGHT] AND LOC != RIGHT
SET RIGHT = RIGHT - 1
[END OF LOOP]
IF LOC = RIGHT
SET FLAG = 1
ELSE IF ARR[LOC] > ARR[RIGHT]
SWAP ARR[LOC] with ARR[RIGHT]
SET LOC = RIGHT
[END OF IF]
IF FLAG =0
Repeat while ARR[LOC] >= ARR[LEFT] AND LOC != LEFT
SET LEFT = LEFT + 1
[END OF LOOP]
IF LOC = LEFT
SET FLAG = 1
ELSE IF ARR[LOC] < ARR[LEFT]
SWAP ARR[LOC] with ARR[LEFT]
SET LOC = LEFT
[END OF IF]
[END OF IF]
[END OF LOOP]
END

22

Questions?

kychen@mail.ntust.edu.tw

23

	Quick Sort
	Review
	Quick Sort.
	Example.
	Example..
	Example…
	Quick Sort…
	Quick Sort….
	Analyses.
	Analyses..
	Randomized Quick Sort.
	Randomized Quick Sort..
	Analyses.
	Analyses..
	Analyses…
	Analyses….
	Variant.
	Variant..
	Variant…
	Variant….
	Variant…..
	Variant……
	Questions?

